有限会社D1ケミカルでタグ「oil」が付けられているもの

英語HP開設のお知らせ。

この度、海外のお客様向けに英語のHPを開設致しましたのでお知らせします。

 

SOD1-Plus英語Hp.jpg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noriaki Satonaga

Sojo University

Takashi Watanabe

D1 Chemical Co. Ltd.

ABSTRACT

We developed a unique reducing additive composed primarily of polyolester, diester, and vegetable oil-based ester compounds in order to switch from boundary to fluid lubrication and improve tribology performance, and chemically and experimentally investigated its effects on tribology performance. To confirm the lubrication effects of this reducing additive, we added it to oil and chemically investigated the cleaning and dissolving of the ultra-fine particle layer of contaminants, etc., adhering to lubrication pathways and sliding surfaces, and performed commercialization testing using actual vehicles. We found that this additive washed away and dissolved sludge, varnish, and other contaminants from lubricated surfaces, improving their lubrication properties and their tribology performance by reducing abrasion and friction.

INTRODUCTION

In recent years demand has grown for improved lubricating oil tribology performance in automobiles, to provide not only greater vehicle performance, but also to reduce their resource usage and environmental impact. Ester-based synthetic lubricating oil has been developed to provide greater lubrication performance, and to reduce friction and wear, in order to satisfy this demand, but there is still a great deal of room for improvement. These ester-based synthetic lubricating oils are made from organic (fatty) acids and alcohol, but attention is increasingly being drawn to the use of polyol ester-based synthetic lubricating oil(1),(2), originally widely used in jet engines, and in automobiles as well. This synthetic lubricating oil offers many features, such as greater low-temperature fluidity, thermal stability, and oxidation stability than mineral lubricating oils. It can be used at high viscosity levels over a wide range of temperatures. It offers excellent lubrication and is clean, dispersible, and biodegradable. However, it is prone to hydrolysis, absorbs humidity, and is limited regarding which rubber, sealing materials, resins, and paints it can be used with. It is also expensive, but it is said to offer the best tribological performance, require the least resources and energy, and be the most functional of all of the synthetic lubricating oils(1),(2). Synthetic lubricating oils are made by mixing lubricating oil additives(3),(4), including detergent dispersants, antioxidants, extreme pressure agents, rust-preventive agents, viscosity index improvers, pour point depressants, antifoaming agents, and friction-reducing additive. The compounds made of these additive are undergoing tremendous advances in line with the development of automobiles and their environments. The ester-based synthetic lubricating oils believed to be essential for the latest automobiles are synthetic lubricating oils which use polyolester and diester additive as their additive. In this research, in order to develop automobile lubricating oil with improved lubrication, wear, and friction performance for use in engines, transmissions, and differentials, we developed a unique reducing additive (SOD-1) composed primarily of polyolester (POE), diester (DST), and vegetable oil-based ester (VOE) compounds as secondary synthetic additive, and chemically and experimentally investigated its effects on tribology performance.

LUBRICATING OIL ADDITIVE TRENDS IN THE LATEST ENGINES

Looking at the trends in the lubricating oil additive used in the latest engines(3), incompletely combusted soot (C) in diesel engines reacts with NO and SO3 created by fuel combustion, accounting for the majority of deposits. Lacquer and varnish are believed to be low molecular fuel oxidation compounds formed near the end of the compression stroke. There are reports of fuel and lubrication additive contributing to reductions in the amounts of deposits in combustion chambers(5). In exhaust gas post-processing calcium sulfate-based lubricating oil additive(6) is used in order to reduce the accumulation of DPF ash, collecting soot and ash. The presence of soot in lubricating oil in crank cases causes friction in valves and liners, so there are reports(7) of commercialization of products reducing friction for both valves and liners through the use of appropriate lubricating additive. The main cause of deposits in gasoline engines is said to be, at high temperatures, oxidation of base oil, and at low temperatures fuel and oxidization products. These substances form resin-like or carbon-like substances inside crank cases as components contained in blow-by gas, accumulating inside engine lubricating oil pathways and parts. Wear resistance improving additives(9), such as new lubricating oil additives(8) extending the low friction properties for gasoline engines, zinc dialkyldithiophosphate (ZnDTP), containing no sulfur, and phosphate ester, have also been developed. Therefore, the key attributes of lubricating oil additive required to counter deposits in both types of engines are detergent dispersal, solubility, and oxidation inhibition.

REDUCING ADDITIVE

THE CONCEPT BEHIND THIS REDUCING ADDITIVE

Contaminants such as deposits, varnish, sludge, etc. which adhere to the lubricated and sliding surfaces of automobile engines, transmissions, and differentials, etc., accumulate over time, having a negative impact on their tribology performance (lubrication, wear, and friction). Normally this is improved by flushing them with kerosene-based cleaning agent when performing oil replacement, but as Figure 1. shows, it is not possible to completely remove all contaminants, which build up three layers of general dirt, adsorbed molecules, and oxidation film. The removed contaminants also often clog up lubricating oil pathways, so this cleaning method is not very effective, and has its own risks. Therefore, this reducing additive, a blend of additive made primarily with POE, DST, and VOE-based compounds, is added to engine, manual transmission, power steering, and differential gear oil (10vol.% mix) and to automatic transmission oil (7vo.l% mix), lubricating while also washing off and removing contaminants. It exposes the initial processed metal surface, greatly reducing friction loss and ensuring sufficient oil clearance. This unique method improves lubrication while reducing wear and friction. The concept behind this reducing additive is that it washes away, dissolves, and removes contaminants from lubricated sliding components, exposing their initial lubrication surfaces (the face of the processed metal), using reducing action improve its tribology performance (lubrication, wear, and friction characteristics). The main problems with this reducing additive are that it is prone to hydrolysis, absorbs humidity, and swells and hardens rubber and sealing materials. These problems have been countered by adding petroleum-based oil and grease components. This approach has been highly effective.

CHEMICAL STATE OF REDUCING ADDITIVE AND ITS EFFECT ON ENGINE OIL

Table 1. shows the chemical state of the reducing additive and its effect on engine oil. Its kinematic viscosity, at 40°C and 100°C, is 610 and 92.4 mm2/s, respectively. Its viscosity index is 243, its flash point is a high 170°C, and its pour point is a low -42.5°C. It offers the high viscosity, temperature-resistant viscosity, flame resistance, and low-temperature fluidity of POE and DST-based compounds. Indiana Stirring Oxidation Test (ISOT) testing found it to have a viscosity ratio of 1.06, with little viscosity change before and after oxidation. There was only a -0.80 mgKOH/g change in oxidation after heating, and its lacquer rating was found to have no deposits, indicating that there were no oxidants or sludge mixed in.

論文画像1.jpg

Figure1. Components of Solid Surfaces

Table 1. Oxidation Stability Test of Reducing

Additive (SOD-1) JIS K2514

論文画像2.jpg

CHEMICAL STATE WHEN REDUCUCING ADDITIVE WAS ADDED TO ENGINE OIL

Table 2. shows the chemical state when 10vol.% by volume of reducing additive was added to fresh engine oil (SN5W-30). The kinematic viscosity of the engine oil without reducing additive at temperatures of 40°C and 100°C was 60.9 and 10.5 mm2/s respectively, but after adding reducing additive was 77.6 and 13.5 mm2/s, respectively, increases of 27.6 and 28.6%. Its control viscosity index of 162 rose by 10.5% to 179 after adding additive. FALEX seizure load, likewise, rose by 33.3%, from 750 to 1000 lbs. Hot tube testing, which evaluates oil heat resistance and cleaning dispersal on a 10 point scale, rose 14.3%, from 7 to 8, after adding reducing additive. Rubber swelling, likewise, rose by 46.4%, from 5.6 to 8.2%. These results show that the reducing additive had major chemical effects. In particular, the kinematic viscosity and FALEX seizure loads improved by approximately 30%. These improvement rates indicate that the reducing additive contributed to tribology performance improvements through compound effects, such as improving lubrication, friction, heat resistance, and cleaning dispersion, and by preventing the hardening of rubber and sealing materials.

論文画像3.jpg

EFFECTS OF REDUCING ADDITIVE ON ATF AND SHEAR STABILITY TESTING

Table 3. shows the effects of reducing additive (7vol.% mix) on ATF oil (new oil) and the results of shear stability testing. Before adding reducing additive, the kinematic viscosity of ATF oil at temperatures of 40°C and 100°C were 33.7 and 7.21, respectively. After adding reducing additive, these increased by 31.2 and 24.3% to 42.2 and 8.96, respectively. Likewise, the viscosity index of ATF oil without reducing additive was 185, but rose by 8.1% to 200 after adding additive. The acid value fell by -14.0%, from 1.72 to 1.48 mgKOH/g. ATF oil without reducing additive seized during shell 4-ball wear testing, but after adding additive its wear diameter was 0.46mm. The reducing additive increased the kinematic viscosity of the ATF by roughly 25%, increased its viscosity index by 8%, and reduced its acid value. These property changes indicate the improvements the reducing additive made to high viscosity, heat resistance, acid resistance stability, and wear resistance. Furthermore, shear stability testing using ultrasound was performed at temperatures of 40 and 100°C. The kinematic viscosity at 40°C was 33.6 for ATF containing no reducing additive, before testing. With reducing additive it was 42.0 mm2/s, an increase of 25.0%. After testing it was 30.8 and 36.3 mm2/s, an increase of 17.9%. Therefore, the kinematic viscosity without reducing additive at 40°C was -8.10%, but with reducing additive was -13.6%, an increase of 67.9%. Likewise, the kinematic viscosities before testing at 100°C were 7.21 and 8.97 mm2/s. The additive increased the viscosity by 24.4%. After testing the viscosities were 6.50 and 7.59 mm2/s, with the additive increasing viscosity by 16.8%. The kinematic viscosity without reducing additive at 100°C was -9.83%, but with reducing additive was -15.4%, an increase of 57.1%. Therefore the shear stability testing found that the reducing additive increased pre-test kinematic viscosities by approximately 25%, both at 40 and 100°C, and increased post-test kinematic viscosities by approximately 17%, for both temperatures. The kinematic viscosity increase rates at 40 and 100°C were roughly 63 and 57%, respectively. Based on this, the reducing additive can be considered to provide sufficient shear stability, since there is no reduction of the kinematic viscosity.

EFFECT OF REDUCING ADDITIVE ON RESULTS OF ENGINE OIL SHELL 4-BALL WEAR TEST

Shell 4-ball wear testing was used to measure the friction and wear effects of reducing additive on a certain automobile manufacturer's oil 5W-30 (new oil). The testing was performed using a rotational speed of 1200 rpm, load of 40 kgf, temperature of 75°C, and time of 60 min. As Figure 2. shows, the wear scar diameter of the oil without additive was 0.46 mm, while for the oil with additive it was 0.33 mm. The reducing additive reduced the wear scar size by 0.13 mm, or 28.3%. These results show that the reducing additive is effective for improving friction and wear,and indicates the potential for it to contribute to improved tribology performance.

論文画像4.jpg 論文画像5.jpg

EXAMPLE OF PRACTICAL APPLICATION OF REDUCING ADDITIVE

REDUCING ADDITIVE CAMSHAFT CLEANING ACTION EXPERIMENT

In order to confirm the cleaning action of the reducing additive, a cleaning action confirmation device, shown in Figure 3, was fabricated and used to perform an experiment on a gasoline-powered automobile's camshaft (used for approx. 120,000km). As Figure 3. shows, 80cc of reducing additive were added to 720cc of engine oil (10vol.%) in an open beaker. The camshaft was then vertically suspended in the solution. The temperature was kept at 80°C±0.1°C, and a motor with an agitating blade was used to forcibly circulate the oil solution in the beaker.The results are shown in Figure 4. The camshaft end was observed at the start of the experiment, and then after 481 hours. Compared to its state at the start of the experiment, after 481 hours a great deal of the varnish and contaminants had been washed off, and the cam face was confirmed as being clean. The oil in the experiment was 1/5 heavier or more than that used in actual automobiles, but this experiment confirmed the cleaning effectiveness of the reducing additive.

2015PFL-JSAE-Final-Paper-20159376最終-(1)-4_02.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-4_05.jpg

EXAMPLE OF USE OF REDUCING ADDITIVE AS GASOLINE ENGINE WHITE SMOKE COUNTERMEASURE

A request was received from the Okinawa Prefecture Japan Automobile Service Promotion Association for minivehicle white smoke countermeasures. An automobile's valve stem shield was replaced, but it was going through approx. 1L of engine oil per 100km and producing continuous white smoke, as shown in Figure 5. Given these symptoms, it was determined that there was a possibility that the oil ring had become stuck, so the engine was disassembled. As Figure 6. shows, the compression ring and oil ring had become stuck, and there were carbon and deposits in the combustion chamber. Reducing additive was added to engine oil (10vol.% mix), and the white smoke stopped after several minutes. The vehicle was driven for approximately 500km more, and the engine was disassembled again. As Figure 6. shows, the piston ring and oil ring were no longer stuck, the carbon and deposits had been cleaned off and removed from the combustion chamber, and the plug was also cleaned. The restoration of piston ring tension also resulted, of course, in increased combustion pressure, improving oil consumption, output, fuel efficiency, and exhaust gas.

2015PFL-JSAE-Final-Paper-20159376最終-(1)-4_06.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-4_07.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-4_08.jpg

EXAMPLE OF USE OF REDUCING ADDITIVE FOR CLEANING OF INSIDE OF GASOLINE ENGINE After performing vehicle inspection and maintenance on a used minivehicle, and replacing the oil with new oil, the vehicle was driven for 1,000 km, and then the engine was disassembled and inspected. The engine was then reassembled and a 10 vol.% mix of reducing additive was added to the oil. The vehicle was then driven for 5089 km at an average speed of 50 km/h. After driving, the engine was disassembled and inspected again, and the inspection results were compared against those of the initial inspection. The engine was then reassembled again and driven, under the same conditions, for another 5,032 km, for a total of 10,121 km. The engine was disassembled and inspected again, and the results of the inspection were compared against those of the previous inspections. Both inspections performed after the addition of the reducing additive found that the interior parts of the engine had been cleaned, and, in particular, that the thick sludge which had accumulated and almost clogged the cylinder body oil passage ports was almost completely washed away.

Figure 7. shows the interior of the cylinder head top and piston side after adding the reducing additive. The cylinder head top photo comparison with the second disassembly inspection results shows that the black sludge and carbon contaminants which had tightly adhered to the surface of the camshaft and cam drive were dissolved and washed away, exposing the metal surface. The 1st and 2nd disassembly inspection photos of the piston, shown in Figure 7, show that the sludge which had accumulated on the top land of the piston was significantly dissolved and washed away, the 1st and 2nd piston rings had been restored by re-exposing them, and the oil ring had been cleaned. Furthermore, comparing expanded photos of the piston ring and crown before and after testing made the extent of the cleaning results even clearer. Table 4. shows an example of improvements to exhaust gas, comparing CO and HC measurements for a standard 1500 cc vehicle when idling, before and after adding reducing additive. As this table shows, both CO and HC were dramatically improved, CO by 0.03% and HC by 45 ppm. This evidence proves that the reducing additive can dissolve and wash away sludge, carbon, varnish, and deposits from engine interiors, restoring their initial processed metal surfaces and improving seizing.

2015PFL-JSAE-Final-Paper-20159376最終-(1)-5_02.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-5_04.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-5_05.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-5_07.jpg

THE IMPACT OF REDUCING ADDITIVE ON CVT JUDDER COUNTERMEASURES

Recently there have been complaints about judder when starting a CVT automatic transmission for regular passenger vehicles of a certain manufacturer. We confirmed that adding a 7 vol.% mix of the reducing additive reduced judder. Similar complaints were received for multiple models from the same manufacturer. Table 5. shows an overview. Judder generally began after driving 47,000 to 122,000 km, and was especially common in 2002 models. The effectiveness of the reducing additive at reducing judder was recognized by dealerships, and the reducing additive is now recognized by dealers as an official judder countermeasure product of the manufacturer. The reducing additive is believed to reduce judder by dissolving and washing away built-up contaminants on the surface of the CVT clutch, which include fine metal particles, exposing their metal surfaces again, reducing slipping and restoring their friction capabilities. In this way the reducing additive has also been proven effective at reducing CVT judder. Other examples of improvements over the past 10 years include the use of the reducing additive to effectively reduce abnormal sounds during dry engine start-up, gear shift shock, abnormal engine sounds, white smoke, excessive oil consumption, abnormal power steering sounds, and AT complaints.

2015PFL-JSAE-Final-Paper-20159376最終-(1)-6_01.jpg

EFFECTS OF REDUCING ADDITIVE ON D1 GRAND PRIX DRIFT CAR TRANSMISSION OIL

In recent years, drift racing has gained wider recognition. Compared to conventional motor sports, drift racing is much harder on vehicles. Engines and transmissions must offer high levels of durability and wear resistance in order to withstand accelerating to 200 km/h in just 10 sec over the 500 m span after the start of the race, and then suddenly decelerating again. Figure 8, 9 and Table 6 show the results of oil shell 4-ball wear testing and elementary analysis performed on drift cars after two hours of driving, one with standard transmission oil and one with transmission oil containing reducing additive. The car with oil that did not contain reducing additive had a wear scar diameter of 0.93 mm, where as the one which contained reducing additive had a wear scar diameter that was 59.1% smaller, at 0.38 mm. Elementary analysis found the greatest difference in the amount of Fe. The result for the car with additive-free oil was 24.9 mass%, where as for the car with oil containing additive it was 1.2 mass%, an improvement of 95.2 %, indicating a significant reduction in friction and wear. Other elements were similarly affected, Cu 60.0, Al 93.5, Na 100, P 97.8 and Ca 80.0% of improvement. The driver of the car whose oil contained additive noted that there was less shock noise when shifting up or down gear, and that shifting was smoother. The above results show that this reducing additive also greatly improves tribology performance, such as friction and wear, as well as durability, even in harsh transmission lubrication situations.

In addition, other benefits can be expected to be observed in the form of reduced foreign matter by proper oil analysis techniques(10). This could be an area of further investigation to validate these assumptions.

2015PFL-JSAE-Final-Paper-20159376最終-(1)-6_04.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-6_08.jpg 2015PFL-JSAE-Final-Paper-20159376最終-(1)-6_09.jpg

CONCLUSION

We developed a unique reducing additive composed primarily of polyolester (POE), diester (DST), and vegetable oil-based ester (VOE) compounds as synthetic additive, and chemically and experimentally investigated its effects on tribology performance. We reached the following conclusions. 1)The unique reducing additive composed primarily of polyolester, diester system, and vegetable oil-based ester compounds is effective at dissolving and washing away sludge, varnish, and other contaminants from lubricated surfaces, restoring them to their original conditions and improving their tribology performance by decreasing wear and friction. 2)The chemical and physical properties of this reducing additive have been confirmed as contributing to improved tribology performance. 3)The effects of this reducing additive have been proven through engine disassembly, inspection and measurement, lubricating oil durability testing, extension of interval of oil exchange and drivability testing on actual vehicles. 4)This reducing additive not only reduces engine friction loss, exhaust gas, and fuel consumption, but also has revolutionary tribology performance benefits for automatic transmissions, differentials, etc. 5)This reducing additive has been proven to offer high durability and exceptional reductions to friction and wear in drift racing, a motor sport which is punishing on cars' engines.

ACKNOWLEDGMENTS

We wish to express our deep appreciation to President Tomoyuki Sonoda, Engineering Division Chief Hideo Takegawa, and the employees of D1 Chemical for their testing and measurement support. We also wish to express our gratitude to Professor Kazunori Mori, Head of the Automobile System Department at Kurume Institute of Technology and Director Kazuhiko Yamaguchi of the Fukuoka Prefecture Japan Automobile Service Promotion Association for their support with testing and measurement.

REFERENCES

(1) Jiro Hirano: Recent Trends of Polyol Ester Lubricant, Journal of Japan Oil Chemists' Society, Vol. 29, No. 9, p627-635 (1980)

(2) Jiro Hirano: Journal of Japan Oil Chemists' Society, Vol. 22, p695 (1973)

(3) Masa Tajima: Lubricating Oil Additives, Journal of Society of Automotive Engineers of Japan, Vol. 29, No. 3, p210-215 (1975)

(4) Shigemi Hayashi: Lubricating Oil Additives, Society of Automotive Engineers of Japan Symposium Text, p8-13 (1983)

(5) S. R. Kelemen, et al.: Fuel, Lubricant and Additive Effects on Combustion Chamber Deposits, No.982715 (1998)

(6) Alexander Sappok, et al.: Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life, SAE Paper (2010), 2010-01-1213

(7) Wim van Dam, et al.: The Impact of Additive Chemistry and Lubricant Rheology on Wear in Heavy Duty Diesel Engines, SAE Paper (1999), 1999-01-3575

(8) Katsuya A., et al.: Lubricant Technology to Enhance the Durability of Friction Performance of Gasoline Engine Oil, SAE Paper, No.952533 (1995)

(9) Koji Hoshino, et al.: Tribological Properties of Sulphur-Free Antiwear Additives Zinc Dialkylphosphates (ZDPs), SAE Paper (2011), 2011-01-2132

(10) Noriaki Satonaga, et al.: Condition Diagnosis Method by AE and Lubricating Oil Analysis,And Extension Method of Running Period by Improvement of Lubricating Oil for Gearbox Machinery, SICE paper, Vol.6, No2, pp8-16(2007)

 

For SOD-1Plus

Oil Maintenance Agent for long Time Driving of Your Beloved Car with Great Care

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_21.png

Only[SOD-1 Plus]is able to be used for various locations and is able to clean,wear prevention/ oil seeping prevention and improvement.

 

 

2014 D1 GRAND PRIX

写真 2015-05-18 15 13 54.jpg

Add SOD-1 Plus to Engine/Gear Transmission/Power Steering!

 

 

Adding Amount to Engine:10%

 

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_06.png

Capable to use for any vehicle model such as horizontally-opposed engine,rotary engine ,hybrid engine,etc.!

Capable to use for totally synthesized oil,partially synthesized oil and mineral oil.Corresponding to new standard oil,SN/GF-5, in addition!

(Various function recoveries are realized by returning your car to brand-new status.)

Sludge/varnish which are unable to be removed by flashing/machine-cleaning are able to be dissolved bit by bit from surface and returned to clean status after 3,000~5,000Km driving.

In addition, chain reaction function recovery and improvement are capable because cleaning and coating are performed simultaneously.

 

Effect:Dry-Start Prevention

*White/Black Smoke Reduction

*Oil Leak,Seeping Prevention,Improvement,Reduction Cleaning

*Wear Prevention

*Friction Reduction

*Fuel Mileage Improvement/Compressing Pressure Improvement

*Exhaust Gas Reduction

*Noise Reduction

*Output Improvement

 

<Reduction Cleaning>

Result:

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_12.png

Added SOD-1 Plus with 10% (300cc) of total amount after pure engine oil replacement, resolved at 10,121Km driving and photos were taken.

As shown on photos, it is understand that sludge is dissolved completely.

 

<Friction Prevention/Protection>

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_09.png

Step-1:Molecular Adsorption Action of Adsorption Adding Agent

Step-2:Reaction Friction Heat

Step-3:Forming Anti-Wear Film

Attached on metal surface, forming protection film and reduce friction resistance and prevent wearing on metal surface. In addition,perform compression pressure improvement and improve output since sealing performance between cylinder and piston is enhanced.

 

<Oil Seeping Improvement>

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_03.png

This is effective for slight seeping but if leaking in drops or dripping exist or not improved after 5,000Km driving after addition,parts failure may be the cause of failure.

In that case, parts replacement is required.

 

 

AT/CVT Fluid:AddingAmount is 7%

 

Enlarged Photo of AT Valve Body
after 80 Thousand Km Driving

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_23.png

*Slight dirt accumulation is observed.

Since [SOD-1 Plus] has high cleaning action, the dirt which is unable to remove with automatic oil replacement is resolved while driving. Dirt is accumulated in AT mechanical part, clutch, valve body, etc, Remove that dirt and realize drive feeling with less gear change shock and judder(body vibration).

Furthermore,[SOD-1 Plus]brings out excellent effect as preventive agent when adding it before failure occurrence.

Effect:Reduction Cleaning of Oxidized Substance Accumulated in AT Mechanical Part

*Vibration(judder)Improvement at Start

*Reduction of Slight Gear Change Shock/ Slide

*Wear Prevention

*Prevention/Improvement of Oil Leakage/Seeping

*Hardening suppression of Rubber O-Ring/ Seal and flexibility Recovering

* There are locations not applied depending on shop.

*Unable to use for NISSAN-Extroid CVTs and Parallel Import Cars

*Unable to use for vehicles not replacing AT oil due to over driving

 

 

Power Steering: Adding Amount is 10%

 

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_26.png

Adding is capable to all of domestic/ imported cars.

(Unable to Add to Parallel Import Cars)

Reservoir Tank: Hydraulic path of Power Steering becomes high pressure when operating a steering wheel. The load applied status continues since steering wheel operation continues frequently especially when driving in a town. For the reason, oil gets high temperature, deterioration proceeded and wear gets larger. Furthermore, oil seal is damaged and seeping and leaking become easily occurred. By adding [SOD-1 Plus],trouble prevention and improvement are realized because oil deterioration and foaming are suppressed.

 

Effect:

*Reduction Cleaning of Oxideized Substance Accumulated in Transmission Differenrial Gear Mechanism

*Improvement of Gear Shift/ Gear Fitting-in

*Wear Prevention and oil Oxidization Suppression

*Reduction or Resolution of Slight Noise

*Lubrication Efficiency Improvement of Oil

Contact our staffs for details.

 

 

Manual Transmission/Differential Gear:Adding Amount is 10%

sod-1plusA3横 全効果を1枚で表現!-画像抜出用_33.png sod-1plusA3横 全効果を1枚で表現!-画像抜出用_36.png

The most important role of oil used to transmisson / differential gears is to protect gears. For the reason,extreme-pressure performance against oxidization stability, heat stability, high pressure and high rotation for high temperature are requested for gear oil.

Since [SOD-1Plus] is able to cover those requests, this reduces and improves noise / wear and extends life.

 

Effect:

*Reduction Cleaning of Oxidized Substance Accumulated in Transmission/ Differential Gear Mechanism

*Improvement of Gear Shift/ Gear Fitting-in

*Wear Prevention and Oil Oxidization Suppression

*Reduction or Resolution of Slight Noise

*Lubrication Efficiency Improvement of Oil

contact our staffs for details.

 

Company Profile

 

Company name D1CHEMICAL co.,ltd
Head office
1-3-45 Hanmichibashi , Hakata-ku, Fukuoka-City, Fukuoka,812-0897, Japan<MAP> 会社概要
TEL 092-292-4439
FAX 092-292-4451
Okinawa office 1 -13-6, Oroku, Naha-City, Okinawa, 901-0152, Jpan
TEL 098-851-7147
Establishment August, 2005
Representative TOMOYUKI SONODA
Adviser(Crisis Management)

Anse well co.,ltd
Misumi Tamayo law firm

Top adviser

Top adviser(Engineering)Takashi Watanabe
Effects on Tribology Performance of a Reducing Additive for Automobile Lubricant

Automotive decomposition maintenance business Authentication number 1-5245

Introduction of the company

 

営業所 営業所2 エンジン ディスプレイ1 P1010149.JPG P1010151.JPG P1010152.JPG P1010154.JPG P1010157.JPG

Introduction of the manufacturing plant

 

製造工場1.JPG

 
二輪 HP.jpg

« | 二輪車専用情報 | »

 
発電機 テスト

二輪車専用情報 | »

 

「SOD-1効果検証」

 

●検証車両 : Daewoo 韓国車 Daewooのサムネール画像

●年式   : 2007年

●排気量  : 800cc

●エンジン : ガソリン

●走行距離 : 16,000㎞

●オイル交換サイクル : 6,000㎞毎

●使用状況 : 家庭用

●施工内容 : エンジンにSOD-1(350cc)添加

 

 

 

 

SOD-1添加後の変化

 

①音が半分以下に静かになった。

 

②アクセルのタッチもスムーズになり、お客様もびっくりして喜んで帰りました。

 

③自宅の近くの坂をなんとか上がっていたのが、スムーズに上がれるようになった。

« | 四輪 Korea | »

 

「SOD-1効果検証」

 

●検証車両 : HyundaiHyundai SUV

●年式   : 2002年

●排気量  : 3,000cc

●エンジン : ディーゼル

●走行距離 : 240,000㎞

●オイル交換サイクル : 6,000㎞毎

●使用状況 : 営業用

●施工内容 : エンジンにSOD-1(400cc)添加

 

 

 

 

SOD-1添加後の変化

 

①ディーゼルエンジンのため音が大きかったのですが、SOD-1を入れて30分間アイドリングしてすぐ音が小さくなりました。

 

②アクセルもスムーズにタッチしてスタート時がスムーズになりました。

 

 

« | 事例テスト | »

 

「SOD-1効果検証」

 

●検証車両 : Ssangyong(韓国RV専門会社)韓国 Ssangyong

●年式   : 2003年

●排気量  : 2,900cc

●エンジン : ディーゼル

●走行距離 : 175,000㎞

●オイル交換サイクル : 5,000㎞毎

●使用状況 : 通勤用

●施工内容 : エンジンにSOD-1(400cc)添加

 

 

 

 韓国 Ssangyong 添加

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOD-1添加後の変化

 

①ディーゼルエンジンですが、特に音が大きい車でした。SOD-1を入れて30分間アイドリングしてすぐに音が小さくなりました。添加前と比べるとすっかり改善されました。

 

②アクセルもスムーズにタッチするようになり、スタート時のパワーがすごく改善されました。

« | 事例テスト | »

 

「SOD-1効果検証」

 KIA 車

●検証車両 : KIA

●年式   : 2010年

●排気量  : 2600cc

●エンジン : ディーゼル

●走行距離 : 4,500㎞

●オイル交換サイクル : 新車

●使用状況 : 家庭用(セカンドカー)

●施工内容 : エンジンにSOD-1(350cc)添加 

 

 

 

 

 

KIA 新車

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOD-1添加後20分間アイドリング

 

SOD-1添加後の変化

 

①ディーゼルエンジンですがアイドリングすると、すぐ音が小さくなりました。

 

②新車でも効果が出てお客さんも喜んで帰りました。

« | 事例テスト | »

 

「SOD-1効果検証」

 

●検証車両 : Hyundaiヒュンダイ 車

●年式   : 2005年

●排気量  : 2000cc RV車

●エンジン : ディーゼル

●走行距離 : 250,000㎞

●オイル交換サイクル : 5,000㎞毎

●使用状況 : 営業用

●施工内容 : エンジンにSOD-1(350cc)添加

 

 

 

ヒュンダイ RV SOD-1添加

 

 

 

 

 

 

 

 

 

 

 

SOD-1添加後の変化

 

①250,000㎞走っているディーゼルエンジンのため、SOD-1を添加して30分間アイドリングしました。結果は、音が非常に小さくなり、お客さんがびっくりしていました。

 

②アクセルもスムーズにタッチするようになり、スタート時のパワーが施工前より改善されました。この点もお客さんは満足されていました。

 

« | 事例テスト | »

 

「SOD-1効果検証」

 

●検証車両 : Ford韓国 Ford 車

●年式   : 2005年

●排気量  : 4,900cc RV車

●エンジン : ガソリン

●走行距離 : 122,000㎞

●オイル交換サイクル : 7,000㎞毎

●使用状況 : 通勤用

●施工内容 : エンジンにSOD-1(500cc)添加

 

 

 

 

SOD-1添加後の変化

 

①RV車はもともと音が大きいので、SOD-1添加でどのくらお客様が満足されるか心配でしたが・・・、SOD-1添加後30分アイドリングして直ぐ音が小さくなり、お客様は本当に満足して喜んで帰りました。

 

アクセルもスムーズにタッチしてスタート時のパワーが凄く改善されました。

« | 事例テスト | »

 

「SOD-1効果検証」

 

●検証車両 : Hyundai 韓国 美国自動車.jpg   

●年式   : 2006年

●排気量  :  3,500cc

●エンジン : ガソリン

●走行距離 : 143,000㎞

●オイル交換サイクル : 6,000㎞毎

●使用状況 : 通勤用

●施工内容 : エンジンオイル交換

         +SOD-1(400cc)添加

 

 

 

 

美国自動車 SOD-1添加

 

 

 

 

 

 

 

 

 

 

 

 

 

SOD-1添加後の変化 

①米国のエンジンのため音が大きかったが、SOD-1添加後20分アイドリングするとすぐに音が小さくなりました。

 

②アクセルもスムーズにタッチして、スタート時のパワーが施工前より凄く改善されました。  

 

 

2800km走行後

 

韓国 Hyundai 4 エンジン 走行後

 

 

韓国 Hyundai 4 ヘッドカバー 走行後

 

 

 

 

 

 

 

 

お客様と一緒にエンジンの状態を確認しました。とても綺麗になっていたので、お客様には大満足して頂けました。

 

« | 事例テスト | »

 

「SOD-効果検証」

 

●検証車両 : Hyundai   韓国 2 ヒュンダイ

●年式   : 2006年 

●エンジン : ガソリン

●走行距離 : 22,300㎞

●オイル交換: 8000㎞毎

●使用状況 : 家庭用

●施工状況 : エンジン・AT 

        オイル交換+SOD-1添加

 

 

 

韓国 2 オイル交換

韓国 2 SOD-1

 

 

 

 

 

 

 

 

韓国 2 SOD?1添加

韓国 2 SOD?1添加 AT

 

 

 

 

 

 

 

 

 

   

 

    

 

 

         エンジン:SOD-1 300cc              AT:SOD-1 400cc

 

SOD-1添加後の変化

 

①エンジンの音がめちゃくちゃ下がりました。

 女性のお客さんですが、エンジンの音を聞いてびっくりしていました。音が高級車並みに静かになりました。

 

②パワーがUPして2,000cc級の車並みにパワーが出ていました。

 SOD-1添加後、20分間アイドリングして50㎞程走行テストをしましたが、高速走行してもRPMがあまり上がりませんでした。120㎞の速度でもRPMが3,000RPMくらいで落ち着いていました。

 

③アクセルのタッチもスムーズになりました。

« | 事例テスト | »

 

「SOD-1効果検証」

 

韓国 ヒュンダイ

●検証車両 : Hyundai

●年式   : 2009年

●エンジン : ガソリン

●走行距離 : 33000㎞

●オイル交換サイクル : 1万㎞ 毎

●使用状況 : 営業用

●施工内容 : オイル交換+SOD-1350cc添加

韓国 1 SOD?1添加

韓国 1 SOD―1

 

 

 

 

 

 

 

 

 

 

 

 

SOD-1添加後に15分間アイドリングし、30分走行テストを行った。

 

テスト後の反応

 

①エンジンの音が静かになりました。

 

②パワーがアップしました。

スタートがスムーズになってすぐ速度が上がるようになりました。アクセルを少しタッチしただけでもスピードが出るので、良くなった事を誰でも実感できます。もちろん、オイル交換の効果もありますがそれ以上に改善しています。

 

③特に燃費がすごく上がりました。

メーカーが発表した最高燃費が9.7㎞/Lですが、SOD-1を添加後、約80~90㎞走行した時点で11.5㎞/Lまでのびました。

 

韓国 1

 

 

« | 事例テスト | »

 

 

「SOD-1効果検証」

 

ベンツ

●検証車両 : メルセデス・ベンツ
(平成14年10月登録)

●車両型式 : GF-203061

●エンジン : 112M26

●排気量  : 2590㎞

●走行距離 : 195588㎞(H22年11月現在)

●使用状況 : 日常生活に使用

●施工内容 : エンジンオイルにSOD-1添加

 

 

ベンツ フィラーキャップ.jpg

 

 

フィラーキャップ

スラッジの付着あり。 

 

 

<排ガス濃度測定>

 

 

SOD-1添加前

 

ベンツ 排ガス 前.jpg

SOD-1添加後

 

ベンツ 排ガス 後.jpg

 

結果

 

SOD-1を添加することで、CO0.01%、HC33ppm減少しました。

 

オーナーの感想

「これはいい!!燃費が9.8㎞/Lから12.3㎞/Lくらいまで伸びました。これだと新車の時と同じですもんね。」

 

 

 

« | 四輪 輸入車  | »

 
「SOD-1効果検証」

BM 全体 HP.jpg

 

●検証車両 : BMW IL750

●型式   : GF-GJ50

●エンジン : 5412

●排気量  : 5.37L

●走行距離 : 63984km

(H22年10月12日現在)

●使用状況 : 10km/日走行

前回のオイル交換から約3000km走行

●燃費   : 4.1/L

 

<SOD-1添加作業>

 

BM フロント2 HP.jpgBM ヘッド HP.jpg

BM SOD-1 HP.jpg

 

 

 

SOD-1 800cc注入

※エンジンオイル総量の10%

 

 

 

 

 

 

<排ガス濃度測定>

 

SOD-1添加前

 

BM 添加前HP.jpg

CO:0.02% HC:33ppm

SOD-1添加後

                   

BM 添加後 HP.jpg

CO:0.00% HC:9ppm

 

結果

 

SOD-1添加前後の比較では、CO 0.02% HC 24ppm 減少しました☆

 

 

 

<施工後約1000km走行時>

 

65076㎞走行 (H22年11月8日現在)

 

BM 添加後3週間 HP.jpg

CO:0.00 %、 HC:1ppm

SOD-1添加直後より、さらにHC:8ppm減少していました。COも添加直後と変わらず0%を維持できていました。

SOD-1は、エンジンオイル添加するだけで、走りながらエンジン内を洗浄し正常な状態に戻しますので、(注:機械的な損傷は無理です)エンジン内が正常な状態に戻ることで、圧縮比が改善し排気ガスも減少します。

※燃費も改善しますが、乗り方によって変わります。この事例では、燃費の改善は確認できませんでした。

 

 

« | 四輪 輸入車  | »

 

「SOD-1」効果検証

実施日:H21年3月26日

●検証車両 :ホンダ インサイト (H21年3月登録)

●型式   :DAA-ZE2

●エンジン :LDA-MF6

●排気量  :1.330cc

●施工内容 :新車購入時にエンジンオイル HONDA純正にSOD-1 10%添加

CVTFHONDA純正にSOD-110%添加

インサイト エンジン.jpg

 

 

 

エンジンオイルにSOD-1添加

インサイト ATF.jpg

 

 

 

 

CVTFにSOD-1添加

 

 

≪初回オイル交換時の距離19,467㎞≫

 

オイル交換 H22年10月21日(19ヶ月無効間)  オイル交換:㈱ホンダ長崎

インサイト フロント 

インサイト ヘッド 

インサイト カム 

インサイト タイミングチェーン HP.jpg

インサイト ヘッドカバー 

インサイト ヘッド 

 

 スラッジの付着は全くなし

すす量(LEM) 0,001mass% (3.0以上で「すす発生」と判断)

分析報告 ジャパンアナリスト㈱

 

 


 

≪27549㎞走行時≫

ヘッド 27549 .JPG

≪53500㎞走行時≫

ヘッド53500.JPG

≪67214㎞走行時≫

ヘッド 67214.JPG

« | 四輪 国産車 | »

 

「SOD-1」効果検証

1.10万5千㎞無交換のオイルフィルター

2.過酷なオイル交換条件下での12万300㎞走行時のヘッドの状態

過酷な使用条件 車両

◆車  両: ホンダ オデッセイ平成11年3月登録(D-1ケミカル社有車)          
◆走行距離:  114810km(平成21年3月末時点)

◆エンジンオイル交換履歴 ※オイル交換時SOD-1を10%添加

① 1回目 2万㎞走行時

② 2回目 4万㎞走行時

③ 3回目 2万㎞走行時

④ 4回目 2万㎞走行時

◆オイルフィルター交換履歴: 約1万㎞走行時(購入時)に1回交換その後10万5千㎞無効間(11万5千㎞走行時)

 

2回目のオイルフィルター交換(前回の交換から10万5千㎞無交換)

 

 

オデッセイ フィルター交換 HP.jpg


オデッセイ フィルター.jpg

 

SOD-1を添加すると洗浄力によってオイルは黒くなります。

そのため、フィルターも真っ黒です。

しかし、10万5千㎞無交換にも関わらず、スラッジの付着・目詰まりは全くありませんでした。

 001.jpg

シリンダーヘッドにスラッジ付着全く無し

 

 

002.jpg

ヘッドボルトの頭部スラッジ付着全く無し

 

003.jpg

ヘッドカバー隅々までスラッジ付着見当たらず

オイル交換を4万km無交換、2万km無交換を3回実施したエンジンですが、エンジンもATミッションも新車時のフィーリングをそのまま維持しています。シリンダーヘッド、カバーも写真の通り綺麗です。

 

 

 

120110㎞走行時に5回目のオイル交換実施(H22年8月)

 

122000㎞走行時のヘッドの状態(H22年11月)

オデッセイヘッド 12万 HP.jpg

オデッセイ ヘッド 2 HP.jpg

オデッセイヘッド HP.jpg

オデッセイヘッドカバー HP.jpg

 

 

スラッジの付着は全くなし!!

 

すみずみまでキレイな状態を保つことができていました。

« | 四輪 国産車 | »

 

シビアコンディション.png↓.png

乳化.png

これを.png

SOD-1はオイルの乳化を防ぎます

 なぜ2.png

 

« | 愛車のための豆知識 | »

 

「SOD-1」効果検証

●検証車両:ハーレーダビッドソンIMG_0633.JPGのサムネール画像新車

        (平成21年4月登録)

●型式:KB4

●排気量:1,58ℓ

●走行距離:1,176km(平成21年6月現在)

●使用状況:街乗り、ツーリング

  (1回の走行距離約100~150km)

●施工状況 

エンジンオイル ハーレー純正20W-50

エンジンオイルにSOD-1添加

 

 

DSC07821.JPGのサムネール画像

 

 

 

 

 

 

 

 

エンジンオイル抜取り作業

 

 

  DSC07827.JPG

 

 

 

 

 

 

 

 

 

 

 

  

                                                                                

           

                   「SOD-1」を添加。(添加後少しエンジン音がなめらかになりました。)

現在走行テスト中です。走行フィーリング、オイルの劣化状況など詳しくチェックを行い

ご報告いたします。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

二輪 輸入車

 

「SOD-1」効果検証

●検証車両: BMW Z3(平成10年9月登録)

IMG_1101.JPG

 

●型式  : GF-CJ28

●エンジン: 286S

●排気量 : 2800cc

●走行距離: 7,625km(平成22年1月現在)

●使用状況: セカンドカーで使用。

年間走行距離約700km

オイル交換は定期点検ごとに実施。

街乗り中心。

エンジン、ミッション、デフ、

パワーステアリング等不具合無。

●施工内容:エンジンオイル BMW純正 SJ 15W-40 5,4ℓ

SOD-1 600cc添加

:パワーステアリングオイル交換せず150cc抜取り、「SOD-1」150cc添加

:ATミッションオイル交換せず500cc抜取り、「SOD-1」500cc添加

 <SOD-1添加 排ガス濃度確認>

 添加前排ガス.JPG

 

排ガス基準値 CO 1%以下 HC 300ppm 以下

添加測定値  CO 0,00 % HC 50 ppm

「SOD-1」添加では、排気ガスHCが少し高めです。

<SOD-1添加後 排気ガス濃度確認>

 

IMG_1086.JPG

 

 

 

添加後排ガス.JPG

 

「SOD-1」添加40分間通常走行を行い測定しました。

添加測定値 CO 0,00 % HC  ppm

*SOD-1添加後 HC 49ppm改善できました。

 


 

*走行距離は使用年数10年以上経過していますが、7,625kmと極端に短い

車両ですので、フィラーキャップからエンジンを覗いてもきれいな状態です。

「SOD-1」をエンジン、ATミッション、パワステ、デフオイルに添加しました。

排気ガスは改善し、スムーズなエンジン回転になりました。エンジンの音も静か

になり「SOD-1」によるエンジン内部の改善が確認できました。

パワーステアリングの、作動音の減少が確認出来ました。

ATミッションに添加後は、変速ショックが、若干改善された感触がしました。

今回の検証から1,000km走行後の排ガス、オイルの劣化状況の経過を確認

後掲載致します。

 

H22年8月24日 【排ガス濃度検証】

前回の検証から3935㎞走行。

15分間アイドリング後に測定しました。

 

BM 排ガス.jpg

CO 0.00% HC 27ppm

オイルの劣化に伴い、HC 27ppm 上昇していましたが・・・

エンジン音は前回よりも更に静かになっていました

« | 四輪 輸入車  | »

 

エンジン性能回復テスト

「SOD-1」効果検証

検証車両: メルセデス・ベンツ 560SL (昭和62年6月登録)

型式: E-107048  原動機 1177

IMG_0693.JPG

●走行距離: 72,899km (平成21年9月17日現在)

●使用状況: 年間走行距離約5,000km 休日だけの使用でほぼ街乗り中心。

●現状燃費: 1リットル当り 約5km

●不具合等: 現状は不具合無く良好な状態

●添加箇所: エンジン、ATミッション、パワステアリングオイル

<エンジンオイルに添加>

IMG_0691.JPG

<オートマチックオイルに添加>

IMG_0684.JPG

<パワーステアリングオイルに添加>

IMG_0688.JPG

<SOD-1添加排気ガス濃度測定>

排ガス規制基準値 CO4,5%以下  HC1200PPM以下

 

Sクラス5.jpg

 

*年式が古いですが、CO 0%、HC1PPM排気ガスの状態は良好です。 

<SOD-1添加排気ガス濃度測定>

IMG_0695.JPG

*SOD-1添加前でも排気ガスの状態は、良好でしたが、HCの濃度も0PPM

まで改善できました。

 

 

 

 

 


*今回の検証では、排気ガス濃度が改善できた事と、燃費が改善できました。

1リットル当り約5kmが7kmに改善

但し燃費は、ガソリンの給油の仕方、季節等で誤差がでますので正確では

ありませんが、使用者様が毎回の給油と走行を繰り返した結果燃費が良くなっ

たそうです。

 

四輪 輸入車  | »

 

GSX1400 パワー測定

「SOD-」効果検証

●検証車両:GSX1400

●型式:BC-GY71A

●排気量:1400cc

●走行距離:3322Km (平成22年5月19日現在)

●使用状況:月1・2回のツーリングで走行

●施工内容:オイル交換  SOD-1 400cc添加

●検証内容:SOD-1添加前後でのパワー測定を,

      レッドバロンさんのコンピューター総合診断機「アシダム」で実施。

  IMG_0360.JPGIMG_0361.JPG

 

 

 

 

 

 

 

 

 

 

 

 

 

 SOD-1添加前

 

図4.jpg 

SOD-1添加後

 図5.jpg

  

 結果

横軸がスタートしてからの速度、縦軸がパワー値となっています。SOD-1添加前はスタート時にパワーの増減が激しく、時速160kmから200km間にパワーの上がりが落ちています。

SOD-1添加後は、添加前に比べて曲線が滑らかになり、スムーズな加速が確認できます。

二輪 国産車 | »

 

カレンダー

2016年12月
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31